
Accuracy of the Parallel-Plate Analogy for 
Representation of Viscous Flow Between 

Coaxial Cylinders 

R. A. WORTH, Department of Polymer and Fibre Science, The University 
of Manchester Institute of Science and Technology, Manchester, 

M60 1 QD, England 

Synopsis 

The accuracy of the parallel-plate approximation to represent various viscous flows of non- 
Newtonian fluids between coaxial cylinders is investigated. Four types of flow are considered 
tangential drag flow, tangential pressure flow, axial drag flow, and axial pressure flow. The solutions 
for flow between parallel plates are compared with the exact solutions, and the errors are plotted 
against radius ratio for a number of values of the power-law index to provide an indication of the 
range of usefulness of the parallel-plate analogy. 

INTRODUCTION 

Because of the complexity of the solutions for viscous flow between coaxial 
cylinders, it is often necessary to simplify the flow by considering an equivalent 
parallel-plate geometry, where the width of the plates is equal to the mean cir- 
cumference of the cylinders, and the plate separation is equal to the difference 
in the cylinder radii. The parallel-plate analogy is particularly useful where 
non-Newtonian fluids such as polymer melts are involved. Of considerable 
importance are (1) tangential flow, when one cylinder rotates relative to the other; 
(2) tangential flow due to an applied pressure gradient; (3) axial drag flow, when 
one cylinder moves longitudinally relative to the other; and (4) axial flow due 
to an applied pressure gradient. Various combinations of these flows may exist. 
The following examples are encountered in polymer processing: flow through 
pipe-extrusion dies (type 4), through wire-coating dies (combination of 3 and 
4), in the extruder screw channel (type l), and in spiral molds (type 2). 

The accuracy of the parallel-plate analogy depends on the radius ratio of the 
coaxial cylinders; if the clearance is small compared with the mean radius, the 
error will be small. However, for relatively large clearances the error involved 
in using the approximation may be considerable. The four types of flow are 
analyzed in turn, for both the coaxial-cylinder and parallel-plate geometries, and 
the accuracy is plotted as a function of radius ratio. It is assumed that the fluid 
obeys the power-law relationship, and various values of the power-law index are 
considered. The results give an indication of the degree of confidence with which 
the parallel-plate approximation may be used for the various flow geometries. 
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THEORETICAL 

The following assumptions are common to the analyses: the flow is laminar; 
the flow is isothermal; the flow is time independent; the fluid is incompressible; 
there is no slip at the fluid boundary; edge or end effects are negligible; and inertia 
and gravity effects are negligible. In addition, the fluid is assumed to be governed 
by the power-law equation 

7 = ?#?p ( 1 )  

= ?#?+n-l (2) 

and the apparent viscosity p is 

Tangential Drag Flow 

This type of flow, with the inner cylinder rotating, is illustrated in Fig. l ( A ) ,  
and the parallel-plate representation is shown in Fig. l ( B ) .  

Coaxial Cylinders 

From the momentum equation 
1 dP l d  

r2 dr r dd 
(r2rr8) = -- = 0 -- 

The only nonzero component of the stress tensor is 

and for a power-law fluid, 

(3) 

The boundary conditions are ug = 0 at r = Ro and ug = V at r = Ri. Equations 
( 3 )  and (5) have been solved' to obtain an expression for the flow rate per unit 
length Q, in terms of the velocity of the inner cylinder V 

A B 

Fig. 1. Tangential drag flow with the inner cylinder rotating for coaxial cylinders (A) and parallel 
plates (B). 
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where s = l/n and p = Ro/Ri. Equation (6)  is not valid for n = 1, and the solution 
for a Newtonian fluid is 

(7) 

Analagous expressions may be derived for the case when the outer cylinder ro- 
tates by using the boundary conditions v e  = V at r = Ro and vo = 0 at r = Ri. 

Qe = (VRi/2)(p2 - 1 - 2p2 logep)l(l- p2) 

Parallel Plates 

For the equivalent parallel-plate geometry, the velocity gradient is uniform, 

(8) 

and the flow rate can be written as 

Qp = VH/2 = (V/2)(Ro - Ri) 

The quantity E may be defined as follows: 

= Qp/Qc  (9) 

t is used as a measure of the accuracy of the parallel-plate representation, values 
close to unity indicating good accuracy. Curves of E against the radius ratio p 
are plotted in Fig. 2 for various values of n from 0.2 to 1.0. The accuracy is also 
plotted for the case when the outer cylinder rotates. 

Tangential Pressure Flow 

The flow geometry is illustrated in Fig. 3(A), with the equivalent parallel-plate 
geometry in Fig. 3( B) . 

0.6 
t.0 

RADIUS RATIO 0 

Fig. 2. Accuracy vs radius ratio for tangential drag flow with inner cylinder rotating (A) and outer 
cylinder rotating (B). 
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B A 

Fig. 3. Tangential pressure flow for coaxial cylinders (A) and parallel plates (B). 

Coaxial Cylinders 

The momentum equation is 

1 bP 
(r2rrO) = -- l d  

r2 ar r 30 
-- 

After integrating and rearranging, 

Again the shear stress is given by eq. 5, and combining eqs. (5) and (ll), 

1 dP  

The velocity profile is obtained by integrating eq. (12); 

and the constants of integration determined from the boundary conditions, 

ug = 0 a t r  = Ri a n d r  = Ro 

The flow rate per unit length is obtained by further integration: 

These equations can only be solved exactly for integer values of s, and for s = 
1 (Newtonian fluid) the solution is 

The constant of integration C2 is related to the coordinate of the plane of zero 
shear stress (maximum velocity) and must be evaluated numerically for values 
of s other than unity. 
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Parallel Plates 

For pressure flow between parallel plates, the flow rate per unit length is 

where H = Ro - Ri, x = O(R0 + Ri)/2, and 

The accuracy c ( = Q p / Q c )  is plotted against ,6 for various values of n in Fig. 4. 

Axial Drag Flow 

This flow and its parallel-plate representation are illustrated in Fig. 5 for the 
case when the inner cylinder moves. 

Coaxial Cylinders 

From the momentum equation, 
l d  dP -- ( rr , )  = - = 0 
r dr dz 

and the stress component for a power law fluid is 

The boundary conditions are 

u, = V at r = Ri 
u , = O  at r = R o  

1.0 b P 1.4 I- 6 1.8 a 

Fig. 4. Accuracy vs radius ratio for cangential pressure flow. 
RADIUS RATIO I3 
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B A 

Fig. 5. Axial drag flow with the inner cylinder moving for coaxial cylinders (A) and parallel plates 
(B). 

These equations have been solved' to obtain an expression for the flow rate 
Qc : 

X V  

2 Qc = - (Ro2 - Ri2)g(P,n) 

where the function g(P,n) is defined as 

2n - 2 1 

Equation (20) is not valid for n = 1, and the correct expression for a Newtonian 
fluid is 

Analagous expressions may be obtained for the case when the outer cylinder 
moves and the inner cylinder is fixed by using the boundary conditions u, = 0 
at  r = Ri and u, = Vat r = Ro. 

Parallel Plates 

The flow rate is 

Qp = W H V / 2  (22) 

where W is the mean circumference, a(R0 + Ri), and H = Ro - Ri. The equation 
equivalent to eq. (19) is simply 

(23) 

The accuracy E (= Qp/Q,) is plotted against P for a number of values of n, for the 
two cases when either cylinder moves and the other is fixed, in Fig. 6. 

TV 
2 

Qp = - (Ro2 - Ri2) 

Axial Pressure Flow 

Pressure flow through an annulus is illustrated in Fig. 7(A), and the parallel- 
plate representation is shown in Fig. 7(B). 
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RADIUS RATIO 13 

Fig. 6. Accuracy vs radius ratio for axial drag flow for inner cylinder moving (A) and outer cylinder 
moving (B). 

B A 

Fig. 7. Axial pressure flow for coaxial cylinders (A) and parallel plates (B). 

Coaxial Cylinders 

The momentum equation is 
l d  dP -- ( rrr , )  = - 
r dr dz 

which on integration gives 
r dP C1 

7 ,  = -- +- 
2 dz r 

(24) 

The constant of integration C1, is related to the coordinate of zero shear stress 
nRo. Introducing the condition that 7 ,  = 0 at r = KRO, eq. (25 )  becomes 

The component of the stress tensor is again given by eq. (18), so that 
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Fredrickson and Bird2 integrated the above equation to obtain an expression 
for the flow rate Q,. Their solution is of the form 

The function Q ( s , K )  is given by 

where 4 is the dimensionless radial coordinate r/Ro. The solution is valid only 
for integer values of s, and the dimensionless coordinate of zero shear stress K 

must be evaluated numerically for values of s other than unity. However, for 
Ro - Ri << Ro, the plane of zero shear stress approaches the midchannel position, 
i.e., K = (1 + p)/2@. 

The solution for a Newtonian fluid is 

8p  dz 

Parallel Plates 

The flow rate is 

where W = ~ ( R O  + Ri) and H = Ro - Ri. The accuracy of the parallel-plate 
approximation, defined as E = QJQ,, is plotted against p for various values of 
n in Fig. 8. 

CONCLUSIONS 

The parallel-plate analogy provides a vast simplification of flow analysis, which 
results in considerable time saving during the solution of problems, particularly 
in the case of non-Newtonian f l o ~ . ~ , ~  In fact the exact solution is in some cases 
intractable without the use of numerical methods. Vaughn and Bergman4 have 
commented on this in relation to flow of non-Newtonian fluids (e.g., polymer 
melts) through annular dies, and their observations are valid for other flow sit- 
uations. It is important, however, that technologists appreciate that the par- 
allel-plate analogy is an approximation and cannot be used for high values of 
radius ratio without significant error. 

The theoretical curves show that it is valid to use the parallel-plate analogy 
for values of radius ratio close to unity; however, in general there is a considerable 
inaccuracy as the radius ratio is increased. The only exception is in the case of 
pressure flow through an annulus (Figs. 7 and 8), where the accuracy is relatively 
insensitive to radius ratio. In all cases the error increases as the power-law index 
n is reduced, i.e., the error is greater for fluids which exhibit a large degree of 
non-Newtonian (pseudoplastic) behavior. 
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Fig. 8. Accuracy vs radius ratio for axial pressure flow. 
RADIUS RATIO D 

Despite the limitations of the parallel-plate approximation, more use may be 
made of the analogy without loss of accuracy provided that the results are cor- 
rected using the curves shown in Figs. 2,4,6, and 8. 

NOTATION 

constants of integration 
function defining flow rate 
plate separation 
power-law index 
pressure 
flow rate (coaxial cylinders) 
flow rate (parallel plates) 
radial coordinate 
inner cylinder radius 
outer cylinder radius 
lln 
velocity 
velocity of inner cylinder 
width of plates 
rectangular coordinate axes 
radius ratio (R&J 
shear rate 
error 
power-law constant 
tangential coordinate 
dimensionless coordinate of plane of zero shear stress 
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P viscosity 
F dimensionless radial coordinate 
7 shear stress 
Q function defining flow rate. 
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